Science-based model for particle formation from novel fuels
نویسنده
چکیده
With the advent of petascale high-performance computing platforms, realistic multiscale modeling can be constructed to incorporate atomic-scale (molecular) information into macroscopic predictions of engineering systems. The overriding theme of the work presented in this paper is developing a multiscale modeling approach for soot formulation where atomistic data is integrated into macroscopic simulations. The prediction of soot formation remains arguably one of the most challenging subjects in combustion science, having an influence over a wide range of applications ranging from combustion efficiency to reducing emissions to slow global warming, to improved heat transfer designs in industrial settings, to predicting the radiation heat transfer from large scale fires. Starting from the fuel structures the new multiscale simulations reveals how chemical changes and transformation can propagate upward in scale to help define the function of the particle structures. In particular, the fuel structure influences the morphology of the nanoparticles, which in turn is critical in determining the overall growth and agglomeration behavior. These simulations make use of a newly proposed combination of molecular dynamics and kinetic Monte Carlo methodologies that will include both chemical reactions and agglomeration processes. The main strength of this approach is the ability to use important atomic-scale information directly into large scale description of the macroscopic phenomena.
منابع مشابه
EFFECT OF FUELS ON THE COMBUSTION SYNTHESIS OF NiAL2O4 SPINEL PARTICLES
Abstract: as magnetic materials, semiconductors, pigments, catalysts, refractories and electronic ceramics. In this paper, wereported the preparation of NiAlThe resulting powder was chracterized by XRD, particle size analysis and SEM. The XRD patterns show that thecombustion technique was excellent to prepare single – phased cubic NiAlfound to be around 14 nm. From the particle size analysis, i...
متن کاملSize-dependent Kinetics Determination of MoS2-K2O/CNTS Nanocatalyst in the Synthesis of Alcohols from Syngas
The influence of Mo particle size on the catalytic activity and product selectivity of alkalized MoS2 nanocatalysts has been investigated. Nanocatalysts are prepared using a microemulsion technique with water-to-surfactant ratios of 1-12. Three different techniques, including XRD, TEM, and hydrogen chemisorption were used to determine the molybdenum average particle size and their activity and ...
متن کاملAn Improved DPSO Algorithm for Cell Formation Problem
Cellular manufacturing system, an application of group technology, has been considered as an effective method to obtain productivity in a factory. For design of manufacturing cells, several mathematical models and various algorithms have been proposed in literature. In the present research, we propose an improved version of discrete particle swarm optimization (PSO) to solve manufacturing cell ...
متن کاملSynthesis and Experimental-Modelling Evaluation of Nanoparticles Movements by Novel Surfactant on Water Injection: An Approach on Mechanical Formation Damage Control and Pore Size Distribution
Water injection is used as a widespread IOR/EOR method and promising formation damages (especially mechanical ones) is a crucial challenge in the near-wellbore of injection wells. The magnesium oxide (MgO) NanoParticles (NPs) considered in the article underwater flooding experiment tests to monitor the promising mechanical formation damage (size exclusion) in lab mechanistic scale include m...
متن کاملSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملA Novel Approach for Direct Preparation of Hydroxyapatite Nanoparticles from natural source using Microwave
Hydroxyapatite (HA) is one of the most common biocompatible ceramic with wide usages in various aspects of medicine due to the resemblance to the mineral bone tissue. The particle size of HA has a key roll in determination of the reaction rate at the interface of natural bones/artificial. Accordingly, this paper tries to propose a novel approach for the preparation of HA nanoparticles from natu...
متن کامل